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OCEAN ACOUSTIC PROPAGATION PREDICTIONS FROM AVERAGED SOUND SPEEDS
COMPARED TO INDIVIDUAL SOUND SPEEDS

Roger M. Oba, Robert A. Zingarcili, and Stanley A Chin-Bing

Numerical Modeling Division, NOARL, Stennis Space Center, MS 39529-5004 USA

Abstract: Wave propagation through volume randomness models much ocean acoustic behavior
Random sound speed introduces non-linearity in the differential equations for the enscmble averages.
This leads to results which can be significantly different than if an averaged volume parameters, such
as sound speed, are used in a deterministic equation. We examine some theoretical aspects of
randomness in the normal mode aid prrabolic equations. As an example, transmission losses ir
several specific examples are computed where differences result

INTRODUCTION

The study of waves through random media has been active for about four decades and has several
comprchensive reviews, including Ishimaru (1978) and Flaté (1983) (which emphasizes ocean
acoustics). One wishes 1o know about the average solution 10 a wave eqQuation with uncenain sound
speed. Frisch (1968) points out that this type of problem is nonlinear in its dependence on the
cocllicicnts, As an introductory example, consider the one dimensional wave equation with constant

sound speed u,, = c2u,, with initial values (0, x) = f(x), &,(0,x)= 0. This problem has solutions
that can be expressed u(f,x) = Y[ f(x—ct) + f(x +c1)]. A probability distribution of sound speeds

give averages of the form (f) = | fdP(c) = | f¢(c)dc. The average solution convolves initial values
with a time dependent probability distaibution;

(udt.x) = j vy, v, = 5‘;[¢(-’-3)+ ¢( Z—:—‘-H ()

‘
For example, the normal distribution ¢(c) = (0v2x )" expl~(c ~co)* /207 ] and the initial

condition, f(x)=e"*, give an average solution (7, x) = €** cos kegs exp(~{kat)? /2). This shows {

aucnuation of the mean field. The average solution contains information about the uncenainty as ;

decay with time: it behaves differently from the simple oscillatory solution for the averaged sound i

specd. Onc can also show saturation phenomenon, i.e., variations comparable to amplitude as ¢ !

becomes large. In the same case, but given boundary values at x =0 and radiation conditions for

x —» == instead, one can show phase speed of the average solution is less than the average phase T

spced. Note, however, that the solution is Jinear in the initial conditions, which means the average of

initial conditions gives the solution equal to the average of solutions with those initial conditions. E }
FJ *
a

EXACT SOLUTIONS TO RANGE INDEPENDENT CASE

The source of the non-linearity in this case is the inversion of the differential operator to find the

solution. To see this, let us consider the case of a horizontally stratified ocean model with flat e

pressure release top surface and bottom at -A which models the trapped modes of the Pekeris two fluid o
.v. nodeB
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| Special

Y

798 —_




Ocean Acoustic Propagation Models i ]

mode! (of Kinsler er al. (1982)). When this is dnven by 2 conunuous wave, point source tus redues .
to a two-dimensional Helmholz equation, which in axi-symmetnc, range independent form s 1

(r“z?,r&,+8,2+k2n2(z)}=(2xr)“‘5(z~;g),5(,;_ ) (:
Boundary conditions on the top are u(z = 0) = 0 and the bouom kcos @ u(t,~h)-sinBu, (1,-h) =0 ’
This Icads to a completely discrete spectrum. Contnuous spectrum can be treated compietely
analogously, with integration over the spectrum rather than summanon. This assumpuion preciudes
the more complicated case where a fixed pant of the specirum 1s discrete in some pans of Ux

probability space and continuous in others. To isolate the non-Linear step, use the Hankel transform
method in Ahluwalia and Keler (1977). Define the Hankel transform and its inverse by

R

Hf (s) = 2:[01,,(”) rf(r)dr. H'f(n)= ";Llom) 5 f(8)ds. 3
In the Hankel transformed equation substitute s = ka to obtain
{3f+k2(nz+a2)jf=5(:~zo}. 4}
The solutions may now be expressed as inverse Hankel tansforms of the the Green's function. First

define two fundamental solutions: f‘(a.z ) which matches bottom boundary condition and f(a.r)

5‘ t which matches top boundary condition. The Green's function solution is F
? Glr.2) =W ) fi(2, ). ) i
i wherez, = min(z, z), 2, = max(z,2,) and the Wronskian is W = W(ka)=f;, f, - f, f2,. Thus the ™
solution to wave cquation is the inverse Hankel transform of Green's function
w(r,n)=H'G. (6) i
{6) uscs a single z-dependent sound speed profile. The average of solutions for many profiles is i ‘
()= EH'G)=H™'EG)=H™ (WS, ). T g

£ (G ) is an averaged Green's function, and, obviously, one cannot simply pull the averages inwo its i
numerator and denominator scparately. One could deform contour of inverse Hankel transfomm w }
obtain "branch” cuts instead of poies for the normal mode contributions. However, the same result ]
follows from normal mode theory with averaging,

g

o s -

NORMAL MODE REPRESENTATION : f

Ahluwalia and Keller (1977) oblain the range indepcndent normal mode representation of solution

42D Aa¥n(r)9u(2). (8)

It has terms satisfying the right radiation condition if the radial function is . (r) = HV(ka,r). The
cocfficients depend on source depth according to A, = ¢, (z,) where vertical equation is

[ +k2(n* +a 1)]0,(2)=0. ®)
The asymptotic behavior of vertical eigenvalues is
al ~~h2Q2xm+8):, m-r e, (10)

S ¢ = k?n?. Clearly the cigenvalues a,, = a2, will change as q changes. One can quantify this as a
functional derivative. First, rewrite the z equation (9) ( ' is z differentiation)

97+ (q-a,)¢,=0 an
Let ¢ vary according to ¢ = ¢ + £ p , then one can compute the Fréchet derivative (see o et al.
(1987))

9gse

9,., =de¢(q.p)=d¢(q)lp]= %

(12

e =0
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Diffcrenuate entire equation (11) with respect 1o € 1o obtain
Geptiqma o, ,vip-a, e, =0 (3

The inner productis (f,g) = ji fljgleiydz . For normalized eigenvalues, one differenuates the
normality condition to find that

0=(0,.9,), =240, ,.0,) - {14y
Take inner product o @, with differentiated equation (13), and iniegrate by parnts with respect 1o 2.
Since the boundary conditions for @ are constant, they carry over o ¢, ,. Thus gives Fréchet
derivative of eigenvalues

da(gipl=a, , =(p9,.8,). 115)
As a simple demonstration, take sound speed constant ¢ =0, 8(0)=6(x)=0, k=1, and h=x,

then a=a, =-1and @ =mz. (15) becomes da,(q)(p}=2/xj:p(z)sinzmdz‘

Also, one may apply (15) to compute average contribution from each mode, if the probability
distribution of the speeds can be reparametrized by a=q,,. If g=g(w). p=dq/dw . then one
may compute the a dependence by da (gi pldP(a,, ) = dP(w).

Tum now to the calculation of the average mode’s contribution when the sound speed is constant, but
statistically uncenain. This coniribution will now depend on many horizontal wave numbers rather

than just one. I b, =(nx+8)/h and a, = Jk* - (nx+6) A%, the series (8) becomes

u(r,2)= 2- ,Sinb,zg sinb,z H{MNa,r), (16)
am
For a rigid bottom condition pick §=1/2. Take a uniform probability distribution over a small
interval: dP (k }=1/(2¢). kg — £ <k <k + € . Three cases arise according w whether the eigenvalue

for the probabilisiically distributed mode is always positive, always negative, or spread around z¢r0.
The last case includes the previous two, $0 consider it. Suppose that the sound speed distribution is

such that the eigenvalues are in a small band centered about zero: ke=(nx +8)/h , x =k - k,. Une B

2 Suppose r is large enough that one may use the asymptotic form

1-4 1
(1) : i
Hg (a.r)";-,,-.— Py T cxpx( Zkor’zr) -

For a single term of (16), only the Hankel function is affected by variation in eigenvalues. Thus the
average of a term of (16) can be written as a product of the sines times an integral involving the

Hankel function. Let s= r,/Zkor + that integral becomes ;

J"z"‘eusxlzds _‘»I"Jz*“e-.sl/z ds} - ‘# |
. ,

finds a, = [2kox]

0

[ Hariapt s — i '2;0‘ x{

i+1 il .
= L% - - rf2 i8
T A b A I DR RS G B
These incomplete gamma functions appear instead of Hankel functions for y, in (16).

Uncertainty in the bottom condition.in the equations (16) give another example. On¢ may model the
uncertainty in the difference between the velocity of two fluid layers by random bottom boundary

condition. Set k =(nx +6o)/h, dP (0)=dO2c, 0y —€ <0< By +€, t=0—-08,. Thus b, =k+1,




